Abelian inner mappings and nilpotency class greater than two
نویسنده
چکیده
By T. Kepka and M. Niemenmaa if the inner mapping group of a finite loop Q is abelian, then the loop Q is centrally nilpotent. For a long time there was no example of a nilpotency degree greater than two. In the nineties T. Kepka raised the following problem: whether every finite loop with abelian inner mapping group is centrally nilpotent of class at most two. For many years the prevailing opinion has been that all such loops have to be of nilpotency degree two. The converse is always true by Bruck, i.e. the nilpotency class two of the loop Q implies the inner mapping group I(Q) is abelian. After describing the problem in terms of transversals I tried to characterize by means of group theory the least counterexample. I expected to find enough properties of the counterexample that would refute its existence. By using these results, supposing special properties, I choose some parameters and finally I constructed a conterexample loop Q of order 2, such that the multiplication group M(Q) is of order 2, the inner mapping group I(Q) is elementary abelian of order 2, for the normal closure M of I(Q) in M(Q), M is of order 2 and the factor group M(Q)/M is elementary abelian of order 2, furthermore the nilpotency class of this loop Q is greater than two.
منابع مشابه
Small Loops of Nilpotency Class Three with Commutative Inner Mapping Groups
Groups with commuting inner mappings are of nilpotency class at most two, but there exist loops with commuting inner mappings and of nilpotency class higher than two, called loops of Csörgő type. In order to obtain small loops of Csörgő type, we expand our programme from Explicit constructions of loops with commuting inner mappings, European J. Combin. 29 (2008), 1662–1681, and analyze the foll...
متن کاملExplicit constructions of loops with commuting inner mappings
In 2004, Csörgő constructed a loop of nilpotency class three with abelian group of inner mappings. As of now, no other examples are known. We construct many such loops from groups of nilpotency class two by replacing the product xy with xyh in certain positions, where h is a central involution. The location of the replacements is ultimately governed by a symmetric trilinear alternating form. c ...
متن کاملMoufang Loops with Commuting Inner Mappings
We investigate the relation between the structure of a Moufang loop and its inner mapping group. Moufang loops of odd order with commuting inner mappings have nilpotency class at most two. 6-divisible Moufang loops with commuting inner mappings have nilpotency class at most two. There is a Moufang loop of order 2 with commuting inner mappings and of nilpotency class three.
متن کاملnth-roots and n-centrality of finite 2-generator p-groups of nilpotency class 2
Here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. Also we find integers $n$ for which, these groups are $n$-central.
متن کاملOn the nilpotency class of the automorphism group of some finite p-groups
Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 28 شماره
صفحات -
تاریخ انتشار 2007